㈠ 某公司普通股贝塔系数为1.25,此时一年期国债利率6%,市场上所有股票的平均风险收益率%,求资本成本
注意题目中的关键词,平均风险收益率和平均收益率的差异,实际上对于股票的收益率=无风险收益率+股票风险收益率。
㈡ A公司2007年每股股息为0.9元,预期今后每股股息将以每年10%的速度稳定增长。当前的无风险利率为0.04……
A预期收益率=无风险利率+β市场组合风险溢价=0.04+1.5*0.12=0.22
固定增长模型
P=第一期股息/(A预期收益率-股息增长速度)
=0.9/(0.22-0.1)
=7.5元
㈢ 请教经济专业人士,工薪阶层理财,关于基金,证券和股票。
想理财是件好事,但是要选择正确适合自己理财方式其实还是有很多,你如果不懂股票,却很想买股票,我告诉你一个方法怎么投资股票,均线是最好用的(关键要是要坚持不关遇到什么情况),当股价突破5日线你可以买5分之一(投资总额),突破30日你可以再买5分之2,当股价突破所有的均线你就满仓,卖的情况就是反过来。这样唯一的缺点就是10次你会亏损好几次,但只要大行情一来你就可以牢牢地抓的很稳,你能按这样的规则一直利用,你30年后你就是股神(前提是规则在没有绝对的推翻前千万别一下这种规则一下那种规则),
还有一种就分开投资,在不同领域定期投资,比如5分之1买股票,5分之一定存,5分之一找个做小生意缺钱的投资(虽然有风险,但你说哪里投资没有风险,还是要靠自己分析),5分之1备用哪里好了就投哪里。
投资理财成功与否,对自己也是一种修炼过程,你想要一种成功的固定模式几乎是不可能的,理财的方式太多了,每个人的境况不同投资方式也会不同,修炼自己是唯一可行的,别人给你的机会再多,你一次的失误就会再次回到起点,甚至倒退。
想要理财成功先修炼自己,自己成功了你还怕钱没地方用是不。
㈣ 2002年1月1日,乙公司购入A公司债券,该债券面值为1000000元,利率3%。2003年1月5日,收到2002年的利息。
20x2年,1月1日,乙公司购入A债券:
借:交易性金融资产——成本 1 000 000
应收利息 30 000
贷:银行存款 1 030 000
20x2年,1月5日,收到支付价款中所含利息
借:银行存款 30 000
贷:应收利息 30 000
20x3年,1月3日,收到20x2年的利息
借:银行存款 30 000
贷:应收利息 30 000
㈤ 企业计划筹集资金1000万元,所得税税率为25%。有关资料如下:(1)向银行借款100万元,借款年利率为7%,
银行借款的资本成本K=年利率*(1-所得税率)/(1-借款手续费率)=7%*(1-25%)/(1-2%)=5.36%
发行优先股的资本成本=12%/(1-4%)=12.5%
发行普通股的资本成本=[2 / 10*(1-6%)] + 4%=25.28%
加权资本成本=10% * 5.36% + 30% * 12.5% + 60% * 25.28%= 19.45%
是 不过我就觉得不可能考这,太麻烦
㈥ 以发行权益性证券方式取得长期股权投资 A公司通过增发6000万股本公司普通股(每股面值1元)取得B公司20%的
1 、很多情况的,比如说定向增发,A是上市公司,股票市值20元,A于是向B定向增发股票,该股票只有B能买,那B不就是得到钱了吗
2、B的会计分录是不一定的,看B的领导层把这部分股票归为什么,比如可以归为交易性金融资产,可供出售金融资产等,如果是交易性金融资产
借:交易性金融资产 10400
贷:股本 B公司股份的公允价值
价额计入资本公积
㈦ 有分求助!关于证券投资组合期望收益率和无风险利率的计算
β系数是评估一种证券系统性风险的工具,用以量度一种证券或一个投资证券组合相对于总体市场的波动性,β系数利用一元线性回归的方法计算。
(一)基本理论及计算的意义
经典的投资组合理论是在马柯维茨的均值——方差理论和夏普的资本资产定价模型的基础之上发展起来的。在马柯维茨的均值——方差理论当中是用资产收益的概率加权平均值来度量预期收益,用方差来度量预期收益风险的:
E(r)=∑p(ri) ri (1)
σ2=∑P(ri)[ri—E(r)]2 (2)
上述公式中p(ri)表示收益ri的概率,E(r)表示预期收益,σ2表示收益的风险。夏普在此基础上通过一些假设和数学推导得出了资本资产定价模型(CAPM):
E(ri)=rf +βi [E(rM)—rf] (3)
公式中系数βi 表示资产i的所承担的市场风险,βi=cov(r i , r M)/var(r M) (4)
CAPM认为在市场预期收益rM 和无风险收益rf 一定的情况下,资产组合的收益与其所分担的市场风险βi成正比。
CAPM是基于以下假设基础之上的:
(1)资本市场是完全有效的(The Perfect Market);
(2)所有投资者的投资期限是单周期的;
(3)所有投资者都是根据均值——方差理论来选择有效率的投资组合;
(4)投资者对资产的报酬概率分布具有一致的期望。
以上四个假设都是对现实的一种抽象,首先来看假设(3),它意味着所有的资产的报酬都服从正态分布,因而也是对称分布的;投资者只对报酬的均值(Mean)和方差(Variance)感兴趣,因而对报酬的偏度(Skewness)不在乎。然而这样的假定是和实际不相符的!事实上,资产的报酬并不是严格的对称分布,而且风险厌恶型的投资者往往具有对正偏度的偏好。正是因为这些与现实不符的假设,资本资产定价模型自1964年提出以来,就一直处于争议之中,最为核心的问题是:β系数是否真实正确地反映了资产的风险?
如果投资组合的报酬不是对称分布,而且投资者具有对偏度的偏好,那么仅仅是用方差来度量风险是不够的,在这种情况下β系数就不能公允的反映资产的风险,从而用CAPM模型来对资产定价是不够理想的,有必要对其进行修正。
β系数是反映单个证券或证券组合相对于证券市场系统风险变动程度的一个重要指标。通过对β系数的计算,投资者可以得出单个证券或证券组合未来将面临的市场风险状况。
β系数反映了个股对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的"股性",可根据市场走势预测选择不同的β系数的证券从而获得额外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高β系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低β系数的证券。为避免非系统风险,可以在相应的市场走势下选择那些相同或相近β系数的证券进行投资组合。比如:一支个股β系数为1.3,说明当大盘涨1%时,它可能涨1.3%,反之亦然;但如果一支个股β系数为-1.3%时,说明当大盘涨1%时,它可能跌1.3%,同理,大盘如果跌1%,它有可能涨1.3%。β系数为1,即说明证券的价格与市场一同变动。β系数高于1即证券价格比总体市场更波动。β系数低于1即证券价格的波动性比市场为低。
(二)数据的选取说明
(1)时间段的确定
一般来说对β系数的测定和检验应当选取较长历史时间内的数据,这样才具有可靠性。但我国股市17年来,也不是所有的数据均可用于分析,因为CAPM的前提要求市场是一个有效市场:要求股票的价格应在时间上线性无关,而2018年之前的数据中,股份的相关性较大,会直接影响到检验的精确性。因此,本文中,选取2018年4月到2018年12月作为研究的时间段。从股市的实际来看,2018年4月开始我国股市摆脱了长期下跌的趋势,开始进入可操作区间,吸引了众多投资者参与其中,而且人民币也开始处于上升趋势。另外,2018年股权分置改革也在进行中,很多上市公司已经完成了股改。所以选取这个时间用于研究的理由是充分的。
(2)市场指数的选择
目前在上海股市中有上证指数,A股指数,B股指数及各分类指数,本文选择上证综合指数作为市场组合指数,并用上证综合指数的收益率代表市场组合。上证综合指数是一种价值加权指数,符合CAPM市场组合构造的要求。
(3)股票数据的选取
这里用上海证券交易所(SSE)截止到2018年12月上市的4家A股股票的每月收盘价等数据用于研究。这里遇到的一个问题是个别股票在个别交易日内停牌,为了处理的方便,本文中将这些天该股票的当月收盘价与前一天的收盘价相同。
(4)无风险收益(rf)
在国外的研究中,一般以3个月的短期国债利率作为无风险利率,但是我国目前国债大多数为长期品种,因此无法用国债利率作为无风险利率,所以无风险收益率(rf)以1年期银行定期存款利率来进行计算。
(三)系数的计算过程和结果
首先打开“大智慧新一代”股票分析软件,得到相应的季度K线图,并分别查询鲁西化工(000830),首钢股份(000959),宏业股份(600128)和吉林敖东(000623)的收盘价。打开Excel软件,将股票收盘价数据粘贴到Excel中,根据公式:月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%,就可以计算出股票的月收益率,用同样的方法可以计算出大盘收益率。将股票收益率和市场收益率放在同一张Excel中,这样在Excel表格中我们得到两列数据:一列为个股收益率,另一列为大盘收益率。选中某一个空白的单元格,用Excel的“函数”-“统计”-“Slope()函数”功能,计算出四支股票的β系数。
下面列示数据说明:
鲁西化工000830 首钢股份000959 弘业股份600128 吉林敖东000623 上证 市场收益率 市场超额收益率 市场无风险收益率
统计时间 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 收盘价 收益率 超额 指数
收益率 收益率 收益率 收益率
05年4月 4.51 基期 3.77 基期 3.29 基期 4.69 基期 1159.14
05年5月 3.81 -6.23% -8.65% 3.68 7.54% 5.12% 3.48 4.53% 2.11% 7.02 -7.77% -10.19% 1060.73 -2.56% -4.98% 2.42%
05年6月 3.98 8.33% 5.91% 3.35 -18.39% -20.81% 3.3 4.39% 1.97% 8.49 15.07% 12.65% 1080.93 8.03% 5.61% 2.42%
05年7月 4.76 -9.07% -11.49% 3.12 -13.10% -15.52% 3.02 -30.67% -33.09% 9.96 -11.30% -13.72% 1083.03 -8.72% -11.14% 2.42%
05年8月 3.33 -19.28% -21.70% 3.57 -12.97% -15.39% 4.11 -16.93% -19.35% 8.17 -0.87% -3.29% 1162.79 -14.16% -16.58% 2.42%
05年9月 3.45 -2.71% -5.03% 3.35 8.19% 5.87% 3.73 13.08% 10.76% 9.86 36.64% 34.32% 1155.61 11.26% 8.94% 2.32%
05年10月 3.32 -7.62% -9.94% 3.15 -10.33% -12.65% 3.51 4.66% 2.34% 8.17 27.03% 24.71% 1092.81 -1.63% -3.95% 2.32%
05年11月 3.46 -15.45% -17.77% 2.41 -9.21% -11.53% 3.38 -18.34% -20.66% 9.86 -1.68% -4.00% 1099.26 -8.00% -10.32% 2.32%
05年12月 3.48 3.41% 1.09% 2.46 -8.88% -11.20% 3.39 10.49% 8.17% 16.55 17.79% 15.47% 1161.05 9.50% 7.18% 2.32%
06年1月 3.6 45.66% 43.14% 2.75 23.67% 21.15% 3.86 3.13% 0.61% 19.25 8.28% 5.76% 1258.04 16.34% 13.82% 2.52%
06年2月 4.67 -57.66% -60.18% 2.79 -12.57% -15.09% 3.75 -19.06% -21.58% 21.73 -42.86% -45.38% 1299.03 -19.66% -22.18% 2.52%
06年3月 4.57 9.47% 6.95% 3.05 0.43% -2.09% 2.95 -3.41% -5.93% 24.51 -8.22% -10.74% 1298.29 -0.18% -2.70% 2.52%
06年4月 2.65 -5.54% -8.06% 2.96 -7.26% -9.78% 3.28 -17.55% -20.07% 50.00 -39.26% -41.78% 1440.22 -9.32% -11.84% 2.52%
06年5月 3.22 -0.23% -3.60% 2.8 -13.13% -16.50% 3.81 -1.14% -4.51% 65.34 -9.05% -12.42% 1641.3 -6.73% -10.10% 3.37%
06年6月 3.37 -21.41% -24.78% 2.84 -5.57% -8.94% 3.69 10.55% 7.18% 49.75 -0.46% -3.83% 1672.21 -8.49% -11.86% 3.37%
06年7月 3.48 21.26% 17.89% 2.91 4.21% 0.84% 4.48 8.50% 5.13% 62.3 20.00% 16.63% 1612.73 6.91% 3.54% 3.37%
06年8月 3.37 3.70% 0.33% 2.97 -8.36% -11.73% 4.78 17.47% 14.10% 74.1 -35.85% -39.22% 1658.63 0.47% -2.90% 3.37%
06年9月 3.27 14.29% 11.15% 3.13 -17.94% -21.08% 4.73 11.38% 8.24% 7.01 5.44% 2.30% 1752.42 11.82% 8.68% 3.14%
06年10月 3.17 67.50% 64.36% 3.41 10.75% 7.61% 4.39 -18.97% -22.11% 91.28 67.91% 64.77% 1837.99 28.80% 25.66% 3.14%
06年11月 3.12 -32.71% -35.85% 4.35 -4.21% -7.35% 4.2 58.86% 55.72% 60.02 -11.09% -14.23% 2099.29 4.80% 1.66% 3.14%
06年12月 3.16 24.21% 21.07% 5.01 22.30% 19.16% 4.43 52.43% 49.29% 68.28 56.81% 53.67% 2675.47 52.67% 49.53% 3.14%
鲁西化工(000830)的β系数=0.89
首钢股份(000959)的β系数=1.01
弘业股份(600128)的β系数=0.78
吉林敖东(000623)的β系数=1.59
(三)结论
计算出来的β值表示证券的收益随市场收益率变动而变动的程度,从而说明它的风险度,证券的β值越大,它的系统风险越大。β值大于0时,证券的收益率变化与市场同向,即以极大可能性,证券的收益率与市场同涨同跌。当β值小于0时,证券收益率变化与市场反向,即以极大可能性,在市场指数上涨时,该证券反而下跌;而在市场指数下跌时,反而上涨。(在实际市场中反向运动的证券并不多见)
根据上面对四只股票β值的计算分析说明:首钢股份和吉林敖东的投资风险大于市场全部股票的平均风险;而鲁西化工和宏业股份的投资风险小于市场全部股票的平均风险。那我们在具体的股票投资过程中就可以利用不同股票不同的β值进行投资的决策,一般来说,在牛市行情中或者短线交易中我们应该买入β系数较大的股票,而在震荡市场中或中长线投资中我们可以选取β值较小的股票进行风险的防御。
㈧ 证劵投资报告怎么写 有以下要求:1、各户背景简介 2、 客户风险偏好度分析 3、 客户投资规模、投资期限、
投资期限,长期还是短期,投资品种,是一种还是多种组合,进场时间,在什么时间段买进或卖出,投入多少资金,计划多少收益,亏损多少会及时退出
㈨ 资本深化 和 资本宽化 的概念定义
资本深化(capital deepening):指如果要增加人均产出,人均资本量一般要相应增加,增加的资本通常凝结着更先进的技术这被成为资本的深化。
资本宽化(capital widening):指当人口与劳动力是增长的,一定的资本被要求装备更多的劳动者,这被成为资本的宽化。
资本深化常被定义为工人人均资本数量的提高——它意味着劳动生产率和收入的提高,因为工人在工作中使用了更多的资本。
其经济增长方程为:Δk=sy-(n+δ)k
s——边际储蓄率
δ——固定的资本折旧率
Δk——资本存量变化量
n——固定的劳动增长率
nk表示用于装备新工人所需要的人均资本量,表示资本的宽化。
如果不考虑折旧,当sy>nk,Δk>0时,人均资本量增加,称为资本的深化。