❶ 两种证券的相关系数等于0有助于分散风险吗
具体参见CAPM模型
❷ 两种证券正相关、负相关、不相关是指什么
相关意思是:变量一个递增另一个就反过来递减,两个变量的乘积为常数时的比例关系,这种关系叫做正比,或者一个递减另一个就反过来递增
正方比和正负相关是不一样的概念
正比,如y=2x , y随x的增大而变大
反比,两个量的比是一个常数,变量同时递增或递减
正比反比是线性关系,正相关负相关是大概走向
y=k*x是正比关系而y=k*x+b是正相关
举个例子:金价相关的影响因素
两种证券如果不相关的话则是,互不影响
不会因为一方的涨跌影响另外一方
❸ 当两种证券完全正相关时,由此形成的证券组合怎样
一、当两种证券完全正相关时,相关系数为1,那么由此形成的证券组合锁定风险组合。
二、具体而言:
1、完全负相关品种组合起会选择作分散风险组合,相反作锁定风险组合
2、只要两种资产收益率的相关系数不为1(即完全正相关),分散投资于两种资产就具有降低风险的作用。而对于由相互独立的多种资产组成的资产组合,只要组成资产的个数足够多,其非系统性风险就可以通过这种分散化的投资完全消除。
3、当证券投资组合中各单个证券预期收益之间相关程度为零(处于正相关和负相关的分界点)时,这些证券组合可产生的分散效应,将比具有负相关时为小,但比具有正相关是为大。
三、如果两种证券完全负相关:
1、完全负相关的话,同等量的组合就锁定风险,一涨一跌,幅度相同的话,不赢不亏啊,如果判断完全负相关,可以再不同行情分别做,此消彼长。完全负相关的品种组合在一起不会选择作为分散风险组合,相反作为锁定风险组合,就和外汇期货交易中的锁单效果类似,等待行情反转,择机解除锁仓。
2、当两种股票完全负相关时,把它们合理地组合在一起,能分散全部非系统风险。
四、证券组合的相关系数:
1、P反映两项资产收益率的相关程度,称为相关系数。
2、随着资产组合中资产个数的增加,资产组合的风险会逐渐降低,但资产的个数增加到一定程度时,资产组合的风险程度将趋于平稳,这时组合风险的降低将非常缓慢直到不再降低。因为系统风险是不能够通过风险的分散来消除的。
3、变化范围:
1)-1≤ρ≤1:
相关系数总是在-1到+1之间的范围内变,-1代表完全负相关,+1代表完全正相关
2)相关系数=1
(1)P相关系数=表示两项资产收益率的变化方向和变化幅度完全相同
(2)说明两项资产风险不能互相抵消,所以这个组合不能降司低任何风险
3)P相关系数=-1
表示两项资产收益率的变化方向和变化幅度完全相反
两项资产风险能充分抵消。这个组合能最大程度降低风险
4)P相关系数=0
不相关
❹ 投资组合风险问题
你的问题着实比较绕人。
我的理解:
(1)证券报酬率的标准差与市场的标准差确实都包含了系统风险和非系统风险造成的影响。但是,别忘了,贝塔系数是证券报酬率的标准差/市场的标准差*证券与市场的相关系数。
可以这么理解,这里的相关系数,剔除了非系统风险的影响。
因为,例如,(a,b)证券组合的方差为SD(a)^2+SD(b)^2+2SD(a)*SD(b)*相关系数ρ,正是因为相关系数ρ的存在,使得(a,b)证券组合的标准差小于等于a的标准差+b的标准差。而(a,b)的证券组合的风险,在a,b不完全正相关的情况下,显然已经抵销了ab之间的部分非系统风险,所以,这个组合的标准差才会小于单个证券a和b的标准差。而这个小于的量在公式中,就是通过相关系数ρ来体现的。所以,可以认为,贝塔系数的公式中,正是因为相关系数因子ρ的存在,剔除了非系统风险的影响。
(2)你这里是一种特殊情况。即a和b的相关系数为-1,也就是说,两种证券完全负相关。而这种完全负相关在现实中是几乎不存在的,因为它假设系统风险为零。而实际中,是存在系统风险与非系统风险的,完全负相关与完全正相关都是特例。
在不存在系统风险的情况下,两种证券才可能完全负相关,才可能存在权重x、y,使得组合的标准差为零。此时,组合是没有风险,因为非系统风险已被抵销,而系统风险又不存在(即为0)。但这只是特例,实际是不存在系统风险为0 的证券组合的,这个特例并不能说明投资组合能分散系统风险,因为此时系统风险本身为0,谈不上风险被分散的问题。
探讨。
❺ 相关系数与证券组合风险的关系如何
一般认为组合资产的相关系数越高,则分散风险的能力越弱,组合的风险越大,反之亦然。
组合中各个证券相关系数越小越好,最好是-1,这样在相同的预期收益下组合的风险越低。对证券组合来说,相关系数可以反映一组证券中,每两组证券之间的期望收益作同方向运动或反方向运动的程度。
【拓展资料】
证券组合是指个人或机构投资者所持有的各种有价证券的总称,通常包括各种类型的债_、股票及存单等。以组合的投资对象为标准,世界上美国的种类比较"齐全"。在美国,证券组合可以分为收入型、增长型、混合型(收入型和增长型进行混合)、货币市场型、国际型及指数化型、避税型等。比较重要的是前面3种。
收入型证券组合追求基本收益(即利息、股息收益)的最大化。能够带来基本收益的证券有:附息债券、优先股及一些避税债券。
增长型证券组合以资本升值(即未来价格上升带来的价差收益)为目标。增长型组合往往选择相对于市场而言属于低风险高收益,或收益与风险成正比的证券。
收入和增长混合型证券组合试图在基本收入与资本增长之间达到某种均衡,因此也称为均衡组合。二者的均衡可以通过两种组合方式获得,一种是使组合中的收入型证券和增长型证券达到均衡,另一种是选择那些既能带来收益,又具有增长潜力。
货币市场型证券组合是由各种货币市场工具构成的,如国库券、高信用等级的商业票据等,安全性极强。
国际型证券组合投资于海外不同国家,是组合管理的时代潮流,实证研究结果表明,这种证券组合的业绩总体上强于只在本土投资的组合。
指数化证券组合模拟某种市场指数,信奉有效市场理论的机构投资者通常会倾向于这种组合,以求获得市场平均的收益水平。根据模拟指数的不同,指数化型证券组合可以分为两类:一类是模拟内涵广大的市场指数,另一类是模拟某种专业化的指数,如道-琼斯公用事业指数。
避税型证券组合通常投资于市政债券,这种债券免联邦税,也常常免州税和地方税。
❻ 证券组合分析的两种证券组合的收益和风险
设有两种证券A和B,某投资者将一笔资金以x的比例投资于证券A,以y的比例投资于证券B,且x+y=1,称该投资者拥有一个证券组合P。如果到期时,证券A的收益率为a,证券B的收益率为b,则证券组合P的收益率Q为:
Q=ax+by
证券组合中的权数可以为负,比如x<0,则表示该组合卖空了证券A,并将所得的资金连同自有资金买入证券B,因为x+y=1,故有y=1-x>1。
投资者在进行投资决策时并不知道x和y的确切值,因而x、y应为随机变量,对其分布的简化描述是它们的期望值和方差。投资组合P的期望收益率E和收益率的方差为:
E=xa+yb
方差=x的平方×证券A的方差+y的平方×证券B的方差+2xy×证券A的标准差×证券B的标准差×证券组合的相关系数
式中:
证券A的标准差×证券B的标准差×证券组合的相关系数——协方差,记为COV(A,B)
举例说明:
已知证券组合P是由证券A和B构成,证券A和B的期望收益、标准差以及相关系数如下:
证券名称 期望收益率 标准差 相关系数 投资比重
A 10% 6% 0.12 30%
B 5% 2% 0.12 70%
那么,组合P的期望收益为:
期望收益=( 0.1 × 0.3 + 0.05 × 0.7 ) × 100% = 6.5%
组合P的方差为:
方差=( 0.3 × 0.3 × 0.06 × 0.06 ) + ( 0.7 × 0.7 × 0.02 × 0.02 ) + ( 2 × 0.3 × 0.7 × 0.06 × 0.02 × 0.12 ) = 0.00058
选择不同的组合权数,可以得到包含证券A和证券B的不同的证券组合,从而得到不同的期望收益率和方差。投资者可以根据自己对收益率和方差(风险)的偏好,选择自己最满意的组合。
❼ 相关系数=0,不相关。不相关是什么意思是不能降低风险吗
不是,是指某资产收益率发生变动,另一项资产收益率不变。此时组合依然是可以分散风险的。
❽ 两种证券之间的相关系数的关系是什么
两种证券之间相互独立。
应答时间:2021-08-05,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
❾ 两证券协方差和相关系数的计算
一、首先要明白这2个的定义 1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。 2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。二、要辨清两者的关系 1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。 2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。 3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。