㈠ 请教用人工神经网络进行股票预测在weka
预测股票可不是有以往股票数据就能的,要考虑因果性,现实事件与股票波动有因果性,也就是时序性。在这情况下有LSTM单元组成循环神经网络可以做到,但训练集的强度跟体积可是很大的,这需要注意。
㈡ 在用时间序列分析股票时,如果连续两天收盘价一样,为什么要剔除一天的数据
同一收盘价影响相同
㈢ 非平稳时间序列可以预测股票走势吗
一般把非平稳时间序列转化为平稳时间序列的方法是取n阶差分法。
比如举个例子,假设xt本身是不平稳的时间序列,如果xt~I(1) ,也就是说x的1阶差分是平稳序列。
那么 xt的1阶差分dxt=x(t)-x(t-1) 就是平稳的序列 这时dt=x(t-1)
如果xt~I(2),就是说xt的2阶差分是平稳序列的话
xt的1n阶差分dxt=x(t)-x(t-1) 这时xt的1阶差分依然不平稳,
那么 对xt的1阶差分再次差分后,
xt的2阶差分ddxt=dxt-dxt(t-1)便是平稳序列 这时dt=-x(t-1)-dxt(t-1)
n阶的话可以依次类推一下。
㈣ 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
㈤ T0和日内阿尔法的区别是什么
股票阿尔法,简单地说,股票超额收益是指基金管理人在投资过程中获得的实际收益超过因承担相应风险而获得的相应预期收益的部分。它是与基金经理业绩直接相关的回报。
T0是一个证券交易系统。T0交易是指在证券交易当日办理证券和价格清算结算手续的交易系统。一般来说,当日买入的证券可以在当日卖出。T0交易在中国证券市场已经实施,因为它太过投机性。为确保证券市场的稳定,中国上海证券交易所和深圳证券交易所对股票和基金交易实行T1交易模式。也就是说,当天买入的股票要到下一个交易日才能卖出。同时,资金仍执行t0,即当日返还的资金可立即使用。上海期货交易所钢材期货交易实行t0交易模式。目前,我国股票市场实行T1清算制度,期货市场实行t0清算制度
㈥ 怎么用机器学习模型做时间序列预测
SVM理论是在统计学习理论的基础上发展起来的,由于统计学习理论和SVM方法对有限样本情况下模式识别中的一些根本性的问题进行了系统的理论研究,很大程度上解决了以往的机器学习中模型的选择与过学习问题、非线性和维数灾难、局部极小点问题等。应用SVM进行回归预测的步骤具体如下:
1)实验规模的选取,决定训练集的数量、测试集的数量,以及两者的比例;2)预测参数的选取;3)对实验数据进行规范化处理;4)核函数的确定;5)核函数参数的确定。其中参数的选择对SVM的性能来说是十分重要的,对于本文的核函数使用RBF核函数,对于RBF核函数,SVM参数包括折衷参数C、核宽度C和不敏感参数E。目前SVM方法的参数、核函数的参数选择,在国际上都还没有形成统一的模式,也就是说最优SVM算法参数选择还只能是凭借经验、实验对比、大范围的搜寻和交叉检验等进行寻优。实际应用中经常为了方便,主观设定一个较小的正数作为E的取值,本文首先在C和C的一定范围内取多个值来训练,定下各个参数取值的大概范围,然后利用留一法来具体选定参数值
股价时间序列的SVM模型最高阶确定
股价数据是一个时间序列,从时间序列的特征分析得知,股价具有时滞、后效性,当天的股价不仅还与当天各种特征有关,还与前几天的股价及特征相关,所以有必要把前几天的股价和特征作为自变量来考虑。最高阶确定基本原理是从低阶开始对系统建模,然后逐步增加模型的阶数,并用F检验对这些模型进行判别来确定最高阶n,这样才能更客观反映股票价格的时滞特性。具体操作步骤如下:假定一多输入单输出回归模型有N个样本、一个因变量(股价)、m- 1个自变量(特征),由低阶到高阶递推地采用SVM模型去拟合系统(这儿的拓阶就是把昨天股价当做自变量,对特征同时拓阶),并依次对相邻两个SVM模型采用F检验的方法判断模型阶次增加是否合适[ 7]。对相邻两模型SVM ( n)和SVM ( n+ 1)而言,有统计量Fi为:Fi=QSVR (n)- QSVR( n+1)QSVR (n)1N - m n - (m -1)mi =1,2,,, n(1)它服从自由度分别为m和(N - m n - (m -1) )的F分布,其中QSVR (n)和QSVR( n+1)分别为SVR ( n)和QSVR( n+1)的剩余离差平方和,若Fi< F(?,m, N-m n- (m-1) ),则SVM (n )模型是合适的;反之,继续拓展阶数。
前向浮动特征筛选
经过上述模型最高阶数的确定后,虽然确定了阶数为n的SVM模型,即n个特征,但其中某些特征对模型的预测精度有不利影响,本文采用基于SVM和留一法的前向浮动特征特征筛选算法选择对提高预测精度有利影响的特征。令B= {xj: j=1,2,,, k}表示特征全集, Am表示由B中的m个特征组成的特征子集,评价函数MSE (Am)和MSE (Ai) i =1,2,,, m -1的值都已知。本文采用的前向浮动特征筛选算法如下[9]:1)设置m =0, A0为空集,利用前向特征筛选方法寻找两个特征组成特征子集Am(m =2);2)使用前向特征筛选方法从未选择的特征子集(B -Am)中选择特征xm +1,得到子集Am+1;3)如果迭代次数达到预设值则退出,否则执行4);4)选择特征子集Am+1中最不重要的特征。如果xm+1是最不重要的特征即对任意jXm +1, J (Am +1- xm+1)FJ(Am +1- xj)成立,那么令m = m +1,返回2) (由于xm+1是最不重要的特征,所以无需从Am中排除原有的特征);如果最不重要的特征是xr( r =1,2,,, m )且MSE (Am+1- xr) < MSE (Am)成立,排除xr,令A'm= Am+1- xr;如果m =2,设置Am= A'm,J (Am) = J (A'm), ,返回2),否则转向步骤5);5)在特征子集A'm中寻找最不重要的特征xs,如果MSE (A'm- xs)EM SE (Am-1),那么设置Am= A'm, MSE (Am)= MSE (A'm),返回2);如果M SE (A'm- xs) < M SE (Am -1),那么A'm从中排除xs,得到A'm-1= Am- xs,令m = m -1;如果m =2,设置Am= A'm, MSE (Am) = MSE (A'm)返回2),否则转向5)。最后选择的特征用于后续建模预测。
预测评价指标及参比模型
训练结果评估阶段是对训练得出的模型推广能力进行验证,所谓推广能力是指经训练后的模型对未在训练集中出现的样本做出正确反应的能力。为了评价本文模型的优劣,选择BPANN、多变量自回归时间序列模型( CAR)和没有进行拓阶和特征筛选的SVM作为参比模型。采用均方误差(mean squared error, MSE)和平均绝对误差百分率(mean ab-solute percentage error, MAPE)作为评价指标。MSE和MAP定义如下:M SE=E(yi- y^i)2n( 2)MAPE=E| yi- y^i| /yin( 3)其中yi为真值, y^i为预测值, n为预测样本数。如果得出M SE, MAPE结果较小,则说明该评估模型的推广能力强,或泛化能力强,否则就说明其推广能力较差
㈦ 谁懂时间序列eviews股票的预测哪位老师或者大神能帮助一下,谢谢了
建立模型之后,点击forecast
㈧ 用libsvm做时间序列预测,为什么训练数据越少越准确
楼主的说法似乎不太对
最后,如果像预测股票价格一切都那样简单,那么就不需要这么多机器学习和金融专家才能进行高频交易。
㈨ 对股票收盘价进行时间序列分析,预测其下一个交易日的收盘价,并与实际收盘价格进行对比
股票投资的分析这么复杂啊,先问问老师有依据这个买股票没,再回答。
㈩ 应用计量经济学时间序列分析在股票预测上有多大的作用
作用没有想象中的大,你可以用股票的滞后变量来进行回归分析,滞后2~3期就够了,不过数据必须具体点,最好细分到每季度、每月的上证指数,还有时间上怎么也要十年左右吧!
我以前在论文附录中做过分析,数据都是自己按季度整理的,挺麻烦的呢,如果需要的话就发给你~
还有就是,我觉得写关于股票的预测方面的实际用处并不是很大,毕竟股票的影响因素太多,单单的凭借以前的走势而预期太不好了。。我自己也炒股票,就像那些macd、kdj之类的指标根本就起不到太大的作用,如果那个能预期的话,股市岂不就成了提款机了?现在你做的这个就像是那些指标一样,要知道,股市是活的,人是活的,而指标确实死的!说这么多的意思就是股市不是能简单预测的,你做的那个用处不大。。
如果你想做的话,建议换个题目,我当时的写的是对弗里德曼的货币需求理论在中国市场的分析。你可以写写货币供应量对通货膨胀的时滞性,分析下在我国市场的滞后期大概是多少~数据在国家统计局和中国人民银行都可以找到的,样本空间一定要足够大,在对滞后变量分析时候主要考虑各自的T检验是否通过,一般从通过之后大概就是那个的滞后期!这个比较直接反而有些许用处~
要是能分析出国家的一般性政策对实体市场的影响就更好了,更有用了~
呵呵,以上只是自己的建议~有什么其他的问题就给我留言吧~